Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Med ; 25(1): 37-48, 2023 01.
Article in English | MEDLINE | ID: mdl-36322149

ABSTRACT

PURPOSE: Biallelic PIGN variants have been described in Fryns syndrome, multiple congenital anomalies-hypotonia-seizure syndrome (MCAHS), and neurologic phenotypes. The full spectrum of clinical manifestations in relation to the genotypes is yet to be reported. METHODS: Genotype and phenotype data were collated and analyzed for 61 biallelic PIGN cases: 21 new and 40 previously published cases. Functional analysis was performed for 2 recurrent variants (c.2679C>G p.Ser893Arg and c.932T>G p.Leu311Trp). RESULTS: Biallelic-truncating variants were detected in 16 patients-10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased. Biallelic missense or mixed genotype were reported in the remaining 45 cases-32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon. For all genotypes, there was complete penetrance for developmental delay and near-complete penetrance for seizures and hypotonia in patients surviving the neonatal period. CONCLUSION: We have expanded the described spectrum of phenotypes and natural history associated with biallelic PIGN variants. Our study shows that biallelic-truncating variants usually result in the more severe Fryns syndrome phenotype, but neurologic problems, such as developmental delay, seizures, and hypotonia, present across all genotypes. Functional analysis should be considered when the genotypes do not correlate with the predicted phenotype because there may be other functionally important regions in PIGN that are yet to be discovered.


Subject(s)
Abnormalities, Multiple , Congenital Disorders of Glycosylation , Epilepsy , Hernia, Diaphragmatic , Pregnancy , Female , Humans , Muscle Hypotonia/genetics , Epilepsy/genetics , Abnormalities, Multiple/genetics , Hernia, Diaphragmatic/genetics , Seizures/genetics , Phenotype , Genetic Association Studies , Syndrome
2.
Epilepsia ; 63(4): 974-991, 2022 04.
Article in English | MEDLINE | ID: mdl-35179230

ABSTRACT

OBJECTIVE: Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS: We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS: Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE: PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Intellectual Disability , Electroencephalography , Epilepsy/diagnostic imaging , Epilepsy/genetics , Female , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Phenotype , Seizures/genetics
4.
Diagnostics (Basel) ; 10(2)2020 Jan 26.
Article in English | MEDLINE | ID: mdl-31991853

ABSTRACT

Mitochondrial dysfunction is known to play a key role in the pathophysiological pathway of neurodegenerative disorders. Nuclear-encoded proteins are involved in mtDNA replication, including DNA polymerase gamma, which is the only known replicative mtDNA polymerase, encoded by nuclear genes Polymerase gamma 1 (POLG) and Polymerase gamma 2 (POLG2). POLG mutations are well-known as a frequent cause of mitochondrial myopathies of nuclear origin. However, only rare descriptions of POLG2 mutations leading to mitochondriopathies exist. Here we describe a 68-year-old woman presenting with a 20-year history of camptocormia, mild proximal weakness, and moderate CK increase. Muscle histology showed COX-negative fibres. Genetic analysis by next generation sequencing revealed an already reported heterozygous c.1192-8_1207dup24 mutation in the POLG2 gene. This is the first report on a POLG2 mutation leading to camptocormia as the main clinical phenotype, extending the phenotypic spectrum of POLG2 associated diseases. This underlines the broad phenotypic spectrum found in mitochondrial diseases, especially in mitochondrial disorders of nuclear origin.

5.
Biotechnol J ; 14(5): e1800477, 2019 May.
Article in English | MEDLINE | ID: mdl-30802343

ABSTRACT

MicroRNAs (miRNAs) are noncoding RNAs that serve as versatile molecular engineering tools to improve production cells by overexpression or knockdown of miRNAs showing beneficial or adverse effects on cell-culture performance. The genomic knockout (KO) of noncoding RNAs in Chinese hamster ovary (CHO) production cells has not been reported. However, given the significant number of miRNAs showing negative effects on CHO-bioprocess performance and the development of clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR/Cas9), genome editing tools facilitate precise optimization of CHO cells via modulation of noncoding RNAs. In a previous high-content miRNA screen, miR-744 was identified as a potential target associated with reduced productivity. Hence, the genomic miR-744 precursor sequence is deleted by two single guide RNA (sgRNA)-Cas9-mediated DNA double-strand breaks (DSB) flanking the miR-744 locus. After fluorescence-activated cell sorting (FACS), clonal miR-744 KO cell lines are recovered and three of them are confirmed as miR-744 KOs. Impacts of CRISPR/Cas9 editing are characterized at the genetic, transcript, and phenotypic levels. During batch cultivation, antibody titers of miR-744 KOs are significantly increased to 190-311 mg L-1 compared to a nontargeting (NT) sgRNA transfected clonal control with 156 mg L-1 , pointing towards the potential of miRNA KO for cell line engineering.


Subject(s)
Antibodies/metabolism , CHO Cells/metabolism , CRISPR-Cas Systems , Cell Engineering/methods , MicroRNAs/genetics , Animals , Cell Culture Techniques , Cloning, Molecular , Cricetulus , Gene Editing/methods , Gene Knockdown Techniques , Genetic Loci , MAP Kinase Kinase 4 , MicroRNAs/metabolism , RNA, Guide, Kinetoplastida/genetics , Staphylococcal Protein A , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...